History of the FPGA

As you probably know, one of Digilent’s major focuses is producing FPGA (field programmable gate array) boards and educating the public on FPGA design. One of the classes I was in last semester focused on FGPA design. This class is EE324 at WSU, which is taught by Digilent’s own Clint Cole. He gave a background lecture on the History of FPGA chips. Not only was it an extremely interesting lecture, but it also helped me understand the huge leaps in logic design that have been made since the 1960s. This is the history that led to the development of FPGA chips. The chips are the parts that Xilinx makes that we use on our FPGA boards.

How Do I Use Digilent Products at School? (Digital Edition)

As you learned from my previous post (the Analog Edition version of this post), we used the Analog Parts Kit and Analog Discovery in EE352 at Washington State University (WSU) to make an AM radio transmitter and receiver. Not only do we use Digilent products in EE352, but we also used Digilent parts in EE324 (Fundamentals of Digital Systems) — the digital lab class I was taking.

What Are Muxes and Demuxes?

A huge part of FPGA design is using logic blocks in design. With logic blocks, you can compartmentalize your design, rather than trying implement everything in one shot. Designing without smaller blocks would be like trying to design a car without subsystems like the braking system or engine. About half of the way through the course there is a project that covers a variety of basic logic blocks, including multiplexers (muxes) and demultiplexers (demuxes). So what are muxes and demuxes?

MPIDE vs. MPLAB

Previously, I posted about what a debugger is. Other than all the great features I described in my debugger post, you may be wondering–why does Digilent care? As you probably know, we use many of Microchip’s wonderful products in our chipKIT and chipKIT Pro boards. We still want to address the overarching differences between the user experiences using chipKIT and chipKIT Pro boards, so we’re going to talk about the differences between MPLAB and MPIDE!

History of the PmodLS1

As you learned from James’ post, Digilent offers 63 Pmods! Each of those products has its own story of its conception and evolution. One of those products that had a very interesting beginning is the PmodLS1.

A few weeks ago while chatting with James (another intern) and Gene (our co-founder) we were discussing how the company began and how the board design process works. In this discussion we discovered that the Pmod LS1 has a beginning in education at Washington State University.

Nexys vs. Basys

At Washington State University, the electrical engineering department uses Digilent FPGAs in several classes. Students are allowed to pick from a variety of our FPGAs. The main choice is between the Nexys or Basys lines of FPGAs. As a student, I hear a lot of confusion from students about the differences between the two series of boards. I figured that students can’t be the only ones who have questions about the difference, so I decided to write a quick summary of the differences. I’ll be using the Nexsys 4 and the soon-to-be newest member of the Basys series as an example. I’ve compiled two lists to highlight the differences between the two.